Transition Metal Sulfide Electrocatalysts for PEM Fuel Cells Hua Zhang¹, Ysmael Verde-Gómez¹ and Allan J. Jacobson¹ Alejandra Ramirez² and Russell R. Chianelli² ¹Department of Chemistry, University of Houston Houston, TX 77204 ²Materials Research and Technology Institute, University of Texas at El Paso, El Paso, TX 79968 帅 ### **Objectives** - Investigate non-platinum electro-catalysts with CO tolerance - > Focus on transition metal sulfides as electro-catalysts - Known catalysts for hydrogen dissociation - Single phases or promoted systems e.g. Ni/MoS₂ - Started with RuS₂ probably the best hydrogen dissociation catalyst - Previous work on oxygen reduction using RuS_x electrocatalysts ## Synthesis of RuS_x Electrocatalysts #### Unsupported RuS_x: #### RuS_x supported on carbon (impregnation method): ## Characterization of RuS_x | Samples | Synthesis | SEM/EDX
S:Ru | TGA
RuS _x % | SSA
m²/g | |-------------------------|--|-----------------|---------------------------|-------------| | RuS ₂ (UTEP) | 400°C /2h/H ₂ /H ₂ S | 2.07(TGA) | | 59.7 | | RuS ₂ /C-1A | RT/48h
400°C/He/1h
400°C/H ₂ S/2h | 2.5 | 18.2 | 190.2 | | RuS ₂ /C-2A | RT/48h
400°C/He/1h
400°C/H ₂ S/2h | 2.59 | 33.9 | 176.6 | | RuS ₂ /C-2B1 | Boiling/2h,RT/46h,
RT/He/0.5h,
400°C/H ₂ S/2h | 2.41 | 33.6 | 149.3 | ^{*} SSA of Vulcan XC72R=234.90m²/g ## Characterization of RuS_x X-ray diffraction patterns of RuS_x and RuS_x/C RuS_x dispersion on carbon (TEM image) sample: RuS_x/C-1A #### **Electrochemical Measurements** Three Electrode Cell #### **Electrode Preparation** The three-layer electrodes were prepared by spraying Carbon paper (Toray, TGPH-090, E-TEK) with a diffusion layer was dried at 80°C for 1 h. Catalyst ink formed from ruthenium sulfide, carbon powder (Vulcan XC-72R, Cabot), Nafion solution (5 wt.%, Aldrich) and glycerol/ethanol The suspension was stirred - ultrasonic bath for 30 min. The ink was airbrushed onto the weighed composite substrate and dried for 30 min at 80 °C The catalyst loading was determined from the final electrode weight. ## Effect of CO on RuS₂ Catalysts Polarization curves for H₂ oxidation on RuS₂ and Pt electrodes in 0.1M H₂SO₄ with 100 ppm CO-H₂. RuS₂ loading: 0.72 mg/cm² #### Single cell performance at different temperatures (0.34 mg/cm² Pt loading for anode and cathode) ## Single Cell –RuS₂ Anode #### Conclusions - RuS₂ is an active electrocatalyst for hydrogen oxidation - $-\sim 100 \text{ mW/cm}^2$ at ambient temperature - Low activity catalysts show CO tolerance - Origin of the activation behavior and CO tolerance of the activated catalyst not yet known